
On The Security of Hash Functions

Myo Myo Aung

Department of Engineering Physics, Mandalay Technological University, Mandalay 05052
Email: mmaung.mm@gmail.com

Abstract— Cryptographic hash functions are an important

building block for a wide range of applications such as the

authentication of information and digital signatures. In this

paper we give special emphasis on the design and security of

the standard hash functions.

Key word- hash functions, design and security

I. INTRODUCTION

Hash function is a fundamental tool in Information

Security. In its simplest from a hash function is an algorithm

that takes an input of any size and outputs a fixed length

“hash code” that is, in some sense, difficult to predict in

advance. The basic idea is that, the hash code serves as

compact representative image of an input string and can be

used as if it is uniquely identifiable with that string. That is,

the output of the hash function serves as a digital finger-

print for the input and should be the same each time the

same message is hashed. We use hash functions to help

provide data integrity in Message Authentication Codes

(MACs), to produce message digests for use with digital
signature schemes and to produce Manipulation Detection

Codes (MDCs) in entity authentication and key

establishment schemes.

For a hash function to be secured it is required to be one-

way and collision resistant. The one-way property can be

achieved if it is easy to generate the message digest of a

message but, is hard to determine the original message when

the digest of it is known. On the other hand, collision

resistance can be attained if it is hard to find two different

messages, having same message digest as output. Apart

from these requirements, the hash function should be
accepting a message of any size as input and computation of

the message digest must be fast and efficient.

Hash functions have been fairly widely standardized by

International Electrotechnical Commission (ISO/IEC),

National Institute of Standards and Technology (NIST), and

the Internet Engineering Task Force (IETF). In this paper,

we give special emphasis on the design and security of

Message Digest (MD) family which has standard by IETF

and Secure Hash Algorithm (SHA) family of NIST secure

hash standard.

The paper is organized as follows. Section 2 describes the

design and security of standard hash functions. Section 3

deals with their software performance. Section 4 presents

the conclusions.

II. DESIGN AND SECURITY OF STANDARD HASH

FUNCTIONS

The most commonly used hash functions are MD5 and

SHA-1. These are dedicated or custom-designed hash

functions, this is, algorithms that were especially designed

for hashing operations. Other examples of custom-designed

hash algorithms are MD2, MD4, and MD5 (the MDx-

family), SHA-0, SHA-1, SHA-224, SHA-256, SHA-384,
SHA-512 (the SHA-family), RIPEMD-160, HAVAL and N-

hash.

Dedicated hash algorithms are designed to be very

efficient on 32-bit machines, which make them very

popular; even through their security is only based on

heuristic arguments. None of the desired properties of

cryptographic hash functions can actually be proven for

them. However recent advances in cryptanalysis have

shown that this is not good enough. In fact, all of the hash

functions mentioned above apart from the SHA-2 algorithm

(i.e. SHA-224, SHA-256, SHA-384, and SHA-512) are

currently considered broken. Although not all of the
theoretical attacks are practical yet, they are rapidly being

improved and put into practice. Trust in dedicated hashing

has long been undermined, leaving hardly any cryptographic

hash functions that can still be used without concern.

The two most widely used dedicated or custom-

designed hash algorithms MD5 SHA-1, how their security is

argued and how they have been attacked. This motivates the

research of hash functions with provable security, which

will be investigated in the following.

A. MD5

This Message Digest Algorithm 5, known as MD5, was

designed by Ronald Rivest of MIT in 1991 and is specified

in the MD5. It takes a message of arbitrary length as input

and produces a 128-bit message digest.

MD5 is used widely in the software world to compute

cryptographic checksums and to store passwords. It is part

of applications such as GPG (public key encryption),
Kerberos (network authentication), TLS (secure client-

server connections), SSL (client-server authentication),

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 38 FEBRUARY 2009 ISSN: 2070-3740

PWASET VOLUME 38 FEBRUARY 2009 ISSN 2070-3740 1154 © 2009 WASET.ORG

Cisco type 5 enable passwords (password storage system)

and RADIUS (remote user authentificatiion).

 The MD5 Algorithm. Let M be the input message of length

b bits. M is first padded to a multiple of 512 bits and then

divided into 512-bit blocks
10

....,,
n

MM each consisting of

16 words. Each block is then processed in 4 rounds; each
consisting of 16 operations, using a 4-word buffer denoted

A, B, C, D. After all blocks have been processed, the buffer

contains the message digest. More specifically, the steps in

MD5 are:

Padding. A single bit “1” is appended at the end of the

message. The “0” bits are appended until the length of the

new message is congruent to 448 modulo 512. Finally a 64-

bit representation of b (the length of the original message) is

appended. The resulting message is an exact multiple of 512

bits long.

Initialize buffer. The buffer is initialized to the hex values

76543210,98

,89,01234567

DFEDCBAC

ABCDEFBA

(with the least significant bit listed first).

Compute constants. A 64-element table is computed from

the sine function according to the formula)1sin(.2
32

tKt

for 63,...,0t , where t is in radians.

Auxiliary functions. Four auxiliary functions, which each
take as input three 32-bit words and produce as output one

32-bit word, are defined as

63...,,48)(),,(

,47...,,32),,(

31...,,16)()(),,(

,15...,,0)()(),,(

tforDBCDCBf

tforDCBDCBf

tforDCDBDCBf

tforDBCBDCBf

t

t

t

t

Word order. Defined the following vector that determines in

which order the words of a block will be processed in each

round:
)15...,,1,0(),...,(:1 150 jjRound

)9,2,11,4,13,6,15,8,1,10,3,12,5,14,7,0(

),...,(:4

)2,15,12,9,6,3,0,13,10,7,4,1,14,11,8,5(

),...,(:3

)12,7,2,13,8,3,14,9,4,15,10,5,0,11,6,1(

),...,(:2

6348

4732

3116

jjRound

jjRound

jjRound

Shift amounts. Define the following shift amounts

)21,15,10,6,21,15,10,6,21,15,10,6,21,15,10,6(

)...,,(:4

)23,16,11,4,23,16,11,4,23,16,11,4,23,16,,11,4(

)...,,(:3

)20,14,9,5,20,14,9,5,20,14,9,5,20,14,9,5(

)...,,(:2

)22,17,12,7,22,17,12,7,22,17,12,7,22,17,12,7(

)...,,(:1

6348

4732

3116

150

ssRound

ssRound

ssRound

ssRound

Process message in 16-word blocks.
/* Process each 16-word block.*/
 donifor 1....,,0

(a) Divide Mi into words
150,, WW where W0 is

the left-most word.

(b) Save A as A , B as B , C as C and D

as D : DDCCBBAA ,,,

(c) for t = 0, …, 63 do

)),,((
ttjtt

SKWDCBfBX ,

XBBCCDDA ,,,

(d) Then increment each of the four registers by the

value it had before this block was started:

DDDCCC

BBBAAA

,

,, ,

 end /*of loop on i* /

 Output. The message digest is A, B, C, D.
One MD5 operation at step can be described in the

following diagram:

jtW

tK

ts

tf

Fig 1: Step operation for MD5

B. Security of MD5

MD5 is computationally infeasible to produce two

messages having the same message digest, or to produce

any message having a given prespecified target message

digest, that is , to be collision resistant and preimage

resistant. In addition, MD5 was made to be fast on 32-bit

machines and to operate without large substitution tables;

hence it can be coded compactly.

While the second and third attributes can be easily

verified and are definitely true, the security of MD5 is based

on a number of heuristic arguments and no proofs of

security exist. Heuristic arguments include that the auxiliary
functions are non-invertible, non-linear and asymmetric, if

bit in B, C and D are independent and unbiased, then each

bit of),,(DCBf will be independent and unbiased, each step

adds in the result of the previous step, each step has a

unique additive constant, input words are accessed in a

different order in each round, and shift amounts in different

rounds are distinct.

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 38 FEBRUARY 2009 ISSN: 2070-3740

PWASET VOLUME 38 FEBRUARY 2009 ISSN 2070-3740 1155 © 2009 WASET.ORG

 All of these attributes are said to increase the avalanche

effect, meaning that if an input is changed slightly (for

example, changing a single input bit), then the output

changes significantly (for example, half the output bit flip).

While its speed and the fact that the algorithm is fairly

simple and publicly available have made MD5 very popular,
it seems rather alarming that the algorithm is used in many

cryptographic applications to this day, considering its

security is not supported by any proof at all.

C. Attacks on MD5

MD5 was designed in 1991 to replace an earlier hash
function MD4 in which flaws had been found. However, it

was soon discovered that MD5 also has its problems.

Starting in 1993 the use of MD5 was more and more

questioned by several successful collision attacks, and

recent results have completely destroyed confidence in the

algorithm.

In 1993, Boer and Bosselaers were able to find a so-called

pseudo-collision for the compression function of MD5, that

is, two different initialization vectors that produce a

collision when the MD5 compression function is applied to

the same message. Although this is an attack that has no
practical significance, it exposed the first weakness in MD5.

Dobbertin announced a collision of the MD5 compression

function in 1996. While this was not an attack on the full

version of MD5, it worried cryptographers enough to

recommend switching to a replacement, such as SHA-1,

WHIRLPOOL, or RIPEMD-160.

Also, a hash of 128 bits is small enough to allow birthday

attacks. Cooke and his company launched a distributed

search project in 2004 with the aim of finding collisions for

MD5 by a brute force search using Pollard’s rho method.

The project was a abandoned a few months later, when it

was announced that collisions had actually been found by
analytical for many, and it is said that Wang and her team

received a standing ovation when they reported that they

had found collisions for the full MD5 at the CRYPTO

conference in August 2004.

D. SHA-1

SHA-1 is the most commonly used member of the SHA

family. It was published by the National Security Agency

(NSA) in 1995 as a US government standard and to replace

the SHA-0 algorithm from 1993, in which a flaw had been

found. SHA-1 takes an input message of at most 2
64-1 bits

and produces a message digest of length 160 bits.

Since MD5 become untrustworthy, SHA-1 has become

the most commonly used hash function. It is employed in

security applications and protocols such as Open PGP

(encryption of data), S/MIME (public key encryption and

signing of e-mail), IPSec (encryption and / or
authentification of IP packets) and SHH (secure remote

login). The copy prevention of Microsoft’s Xbox game

console also relies on SHA-1.

The SHA-1 Algorithm. SHA-1 is often considered a

successor of MD5 because its design is very similar.

Padding is performed in the same way, then a message M of

length b bit is split into 16-word blocks
10

....,, nMM and

each block is processed in 4 rounds, consisting of 20

operations each, and using a 5-word buffer A, B, C, D, E.

After all blocks have been processed, the buffer contains the

message digest. More specifically, the steps in SHA-1 are:

Padding. M is considered as a bit string and a single bit “1”

is a appended at the end of the message. Then “0” bits are

appended until the length of the new message is congruent

to 448 modulo 512. Finally a 64-bit representation of b is

appended, resulting in a message which is an exact multiple

of 512 bits long.

Initialize buffer. The buffer is initialized to the values

0123,10325476,98

,89,67452301

FEDCEDBADCFEC

EFCDABBA

Constants. The following constants are used (in hex):

39,...,,20196

19...,,08279995

tforEBAEDK

tforAK

t

t

79....,,606162

59....,,4018

tforDCCAK

tforBBCDFK

t

t

Auxiliary functions. A sequence of logical functions is

used, each operating on three words and producing one
word as output. They are defined as follows:

39...,,20),,(

,19...,,0)()(),,(

tforDCBDCBf

tforDBCBDCBf

59,...,40

)()()(),,(

tfor

DCDBCBDCBf t

79,...,60),,(tforBCDDCBf

Process message in block.
/* Process each 16-word block.*/

donifor 1....,,0

(a) Divide Mi into words
150,, WW where W0 is the

left-most word

(b) For 79...,,16t

let 1)(
161483 tttt

WWWWW

(c) Save A as A , B as B , C as C , D as D

and E as E : EEDDCCBBAA ,,,,

(d) for t = 0, …, 79 do

(e) KWEDCBfAX),,()5(

XAABBCDDE ,,30,,

(f) Then increment each of the four registers by the

value it had before this block was started:

EEEDDD

CCCBBBAAA

,

,,,

end /* of loop on i *

Output. The message digest is A, B, C, D, E.

One SHA-1 operation at step can be described by the

following diagram:

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 38 FEBRUARY 2009 ISSN: 2070-3740

PWASET VOLUME 38 FEBRUARY 2009 ISSN 2070-3740 1156 © 2009 WASET.ORG

jtW

tK

t
f

30

5

Fig. 2: Step operation for SHA-1

1) Security of SHA-1

The authors of the SHA-1 claim that it is computationally

infeasible to find a message which corresponds to a given

message digest, or to find two different message which

produce the same message digest for SHA-1. As with MD5,

however, no proofs of security exist and all there is to

support this statement are heuristic arguments like those

mentioned for MD5 in Section 2.1.1.
SHA-1 is also very fast on 32-bit machines and can be

coded quite compactly, and it is thus used very widely. In

fact, as flaws were found in MD5, cryptographers

recommended replacing MD5 by SHA-1, which was done in

many applications. Since SHA-1 has been broken as well

(meaning that collisions can be produced with less

computational complexity than that of a brute force attack).

NIST now plans to replace SHA-1 by members of the SHA-

2 family (SHA-224, SHA-256, SHA-384, SHA-512 named

after their digest lengths), for which no attacks have been

reported, by 2010.

2) Attacks on SHA-1

The members of the SHA-family were designed as

successors of MD4, just as MD5 was, but they lasted a bit

longer. SHA-1 is very similar to its predecessor SHA-0, and

so the first reason to doubt the security of SHA-1 was the

announcement that SHA-0 had been broken by Chabaud and

Joux at CRYPTO’98. The next milestone in the

cryptanalysis of SHA-0 was when Wang and her team

announced their collision attack in 2004, which also works

for SHA-0. That was when cryptographers first started to

recommend finding alternatives to SHA-1, especially in the
design of new cryptosystems. Also as a result of that, NIST

announced it would phase out the use of SHA-1 by 2010

and replace it by SHA-2 variants.

The first successful attack on SHA-1 itself was performed

by Rijmen and Oswald in early 2005. They were able to

break a reduced version of SHA-1: 53 out of 80 rounds.

Only a month later a break of the full version of SHA-1 was

announced by Wang, Yin and Yu. This was another famous

day for Wang and her team, who based their attack on
several different methods used in earlier attacks on SHA-0

and MD5. This attack required 2
69 operations, but was soon

improved to take only 263. Such collision attacks generally

work by starting off with two messages and continually

modifying them throughout the attack. That means that the

structure of the colliding messages is determined by the

attack, and they will almost certainly turn out to be complete

gibberish. Although this is of theoretical importance, it is

hard to turn it into a practical attack.

Recheberger and de Canniere announced the first

collision attack on SHA-1 where the attacker can influence

the colliding messages. According to Rechebger, the new
attack allows up to 25% of the amount to be freely selected

can be further increased by optimizing the attack. This is

now a quite practical attack itself, considering that HTML

documents, for example, may have complete nonsense after

the tag that will never be printed. So it is now possible to

produce two seemingly identical html documents with the

same SHA-1 hash. This leaves SHA-1 no better off than

MD5.

Just as with MD5, (second) preimage attacks on SHA-1

have not been accomplished, but the collision attacks have

reached a level that causes serious concern and makes
urgent a quick replacement of the algorithm.

III. PERFORMANCE OF HASH FUNCTIONS

In order to compare the performance of software

implementations of hash functions, an overview has been

compiled in Table 1. All timings were performed on a

90MHz Pentium processor. The implementations were

written by A. Bosselaers [3]. Most of them use additional

memory to improve the speed. The C-code was compiled

with a 32-bit compiler in protected mode. Some algorithms

like Snefru and SHA would perform relatively better on a
RISC processor, where the complete internal state can be

stored in the registers. On this type of processor, SHA is

only about 15% slower than MD5.

TABLE 1: PROCESSING SPEED (IN MBIT/S) FOR A 90MHZ PENTIUM

PROCESSOR, FOR BOTH ASSEMBLY IMPLEMENTATION AND PORTABLE C

IMPLEMENTATION.

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 38 FEBRUARY 2009 ISSN: 2070-3740

PWASET VOLUME 38 FEBRUARY 2009 ISSN 2070-3740 1157 © 2009 WASET.ORG

IV. CONCLUSION

In this paper we discuss about the security features which
are essential to construct a cryptographic hash function. We

also present the design of cryptographic hash functions

which are both secure and efficient in software and

hardware implementation. An important note is that the

increased security of hash functions is achieved at the

expense of lower performance.

REFERENCES

[1] B.Preneel, Analysis and Design of

Cryptographic hash functions.

 Katholieke University Leuven, Beligum,

[2] Alexander W.Dent and Chris J.Mitchell.

User’s Guide to cryptography and

standards.

www.artchouse.com.

[3] S.Bakhtiari,R.Safavi-Naini,J.Pieprzyk,

Cryptographic Hash Functions:

A Survey Paper, University of Wollongong,

Australia.

[4] Maile Massierer, Provably Secure
Cryptographic Hash Functions, University

of New South Wales.

[5] Murali Krishna Reddy Danda, Design and

Analysis of Hash functions.

PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 38 FEBRUARY 2009 ISSN: 2070-3740

PWASET VOLUME 38 FEBRUARY 2009 ISSN 2070-3740 1158 © 2009 WASET.ORG

